a^2-19=-3

Simple and best practice solution for a^2-19=-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2-19=-3 equation:



a^2-19=-3
We move all terms to the left:
a^2-19-(-3)=0
We add all the numbers together, and all the variables
a^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $

See similar equations:

| 5x6x1x=30x | | -5m-5=84 | | X+9+x+2(x+3)=23 | | 9d+17=-1 | | 52.50=15x | | 5+-2y=7y | | -3=3/2(2r-8) | | 2x-8-(4x-6)=40 | | |3m-2|=13 | | 58=10–8y | | 3.5+0.2h=2+0.3h | | 2.75(3x+1.50)=18.75 | | x+1=2x-16 | | 19.2+7.5x=-64.1-16.3x | | 2c-5=c+ | | 2a+a+54=180 | | 20x+35=10x | | 2.75+1.50x=18.75 | | | | -2(y+4)=-2(y+5) | | 4x+x=18-26 | | 6u=-4 | | 2(3+2x)=20+7(x-1) | | (4x+3)+(2x+3)=180 | | 2a–6=–12 | | f(10)=-10^2-9(10)-4 | | -5v-2v+3-1=16 | | 3x=-72x+9 | | 2x+12+x-6=18 | | 7(n-1)-1=2-5(n+1) | | 5x+1=105 | | 8s+5=77 |

Equations solver categories